Impacted Maxillary Canines: Diagnosis and Management

An impacted maxillary canine is usually diagnosed during a routine dental examination. Disturbance in the eruption of permanent maxillary canines can cause problems in the dental arch and adjacent teeth, which require special care and attention. Therefore, clinicians should be capable of dealing with this clinical situation in order to deliver optimal treatment.

Clinicians have various definitions of “impaction.” Canine impaction can be defined as an unerupted tooth after its root development is complete; or a tooth still unerupted when the corresponding tooth on the other side of the arch has been erupted for at least 6 months and has a complete root formation; or a condition in which a tooth is embedded in the alveolus and is locked in by bone, adjacent teeth, or other obstacles and cannot properly erupt into the oral cavity. This includes teeth in which eruption is significantly delayed and there is no clinical or radiographic evidence that further eruption is likely to happen.

Maxillary canines are among the last teeth to develop and have the longest period of development. They also have the longest and most devious path of eruption from the formation point lateral of the pterygoid fossa to the final position in the dental arch. Therefore, there is an increased potential for mechanical disturbances resulting in displacement and impaction.

Maxillary canines are among the last teeth to develop and have the longest period of development. This article discusses the etiology, diagnosis, and clinical management of impacted maxillary canine teeth.

PREVALENCE AND ETIOLOGY
Permanent maxillary canine impaction has been reported in about 1% to 2% of the population. This makes the maxillary canine the second most commonly impacted tooth, after third molars. Research indicates that women are twice as likely as men to have impacted maxillary canines. The prevalence of impacted maxillary canines is between 0.9% and 2%. It has been found that maxillary impacted canines occur palatally 85% of the time while only 15% of impactions occur labially. According to Al-Nimri and Gharaibeh, palatal canine impaction occurred most frequently in subjects with a Class II division 2 malocclusion. Among all patients with impacted canines, it was found that unilateral impaction is much more common than bilateral impaction. Maxillary canine impactions appear to be 10 to 20 times more frequent than those in the mandible.

While the etiology of impacted maxillary canines is thought to be multifactorial, they are not likely to originate from modified conditions in modern civilization such as food texture or eating behavior; however, the exact etiology is still unclear. Possible causes for impacted canines may include one or more of the following local factors: inadequate space for eruption or early loss of primary canines; abnormal position of the tooth bud; the

Continued on page 64
Impacted Maxillary Canines...
continued from page 62

presence of an alveolar cleft, a cystic lesion or neoplasm; ankylosis; dilacerations of the root; an iatrogenic origin; and an idiopathic condition for no apparent reason. Systemic conditions such as endocrine deficiencies, malnutrition, febrile disease, or irradiation can also account for impacted canines.

Currently, there are 2 major theories that have been used to explain the cause of maxillary canine impaction: the guidance theory and the genetic theory. The guidance theory states that excess space in the canine area of the dental arch during development and eruption owing to an absent or malformed lateral incisor root causes the canine to lose its way and erupt improperly, because a permanent canine tooth needs the distal aspect of a lateral incisor’s root to guide it downward to the occlusion. The genetic theory claims that palatally impacted canines are the result of a combination of multiple gene expressions which cause dental anomalies such as congenital missing or peg-shaped lateral incisors due to a developmental disturbance of the dental lamina.

Lateral cephalometric radiographs can help determine the position of impacted canines relative to other structures.

CLINICAL DIAGNOSIS
Impacted canine teeth can be detected as early as age 8 years. Clinical examination includes overall arch inspection, palpation of canine bulges, mobility of primary canines, and a review of the patient’s chronological age and history of eruption/exfoliation patterns of the dentition. Clinicians should be aware that there is a possibility of canine impaction in the absence of canine bulges, abnormality in shape, missing lateral incisors, or less mobility of primary canines. Unusual movement of lateral or central incisors can also be a sign of root resorption due to pressure from malposed canines. When there is the clinical presence of any of these signs, radiographic examination should be performed to confirm the diagnosis.

RADIOGRAPHIC DIAGNOSIS
Radiographic examination should be initiated with routine periapical radiographs. However, when clinical signs lead to a possibility of canine impaction, radiographic evaluation is immediately needed to confirm the diagnosis and assist in developing an appropriate treatment plan. There are various radiographic methods that can be used to obtain needed information.

Periapical radiographs can be helpful by using at least 2 radiographs at different angles to determine the buccolinguial position of a particular tooth. There are 2 methods that are widely used: Clark’s rule and the buccal object rule. Both use the different angulation of the x-ray beam to locate objects in different directions. These methods, also known as same lingual-opposite-buccal rule, will make the objects on the lingual side move to the same direction as the x-ray tube and objects on the buccal side move in the opposite direction.

Panoramic radiographs are also widely used to locate the position of impacted canines. They are part of the fundamental imaging taken for dental records and treatment planning. They provide an overall look of the entire dentition including the temporomandibular joints (TMJs). Many prediction values proposed in the literature come from this type of radiograph.

Occlusal radiographs can identify the position of impacted maxillary canines accurately in conjunction with routine periapical radiographs. When properly obtained, they provide information about the buccolingual direction of the crown and root of the canine. They also provide information related to the distance between the midline and the position of the canines. The disadvantage of this radiograph is that it cannot provide any information about the vertical position of the canines.

Lateral cephalometric radiographs can help determine the position of impacted canines relative to other structures. They are helpful because they are some of the fundamental radiographs that all patients have taken prior to the beginning of orthodontic treatment. Maxillary canines can be located easily on this radiograph as early as age 8 or 9 years. Their inclination should be parallel to the maxillary incisors.

Posterior anterior radiographs are also useful. Normal canines in this type of radiograph should angle medially, and crowns should be lower than the apex of the lateral incisors and the lateral border of the nasal cavity. However, this method still provides only 2-dimensional images with some degree of superimposition. Nevertheless, this type of radiograph is not usually taken unless there are skeletal asymmetry and/or transverse width issues. If there is any concern of impaction with other abnormalities, it might be better to utilize cone beam computed tomography (CBCT) instead.

CBCT has the great advantage of showing hard-tissue reconstruction in the area of interest in 3 dimensions, presenting a view without any superimposition, and also providing a 1:1 magnification which can be used to reproduce panoramic or cephalometric images. Its use in orthodontics includes impacted teeth and TMJ evaluations, 3-dimensional views of upper airways, assessment of maxillofacial growth, and development and dental age estimation. CBCT scans are far better than conventional panoramic radiographs in verifying the orientation and location of the impacted canine and its relationship to neighboring structures. This technique makes identification of the
exact position and shape of impacted canines possible, which is crucial in treatment planning. Furthermore, it is very helpful in evaluating damage to adjacent teeth and the amount of surrounding bone. The major disadvantage of CBCT is the increased amount of radiation exposure, which is at least 4 times higher than with ordinary panoramic radiographs. Therefore, orthodontists should consider cost-benefit outcomes before ordering this radiograph.

PREDICTION OF MAXILLARY IMPACTION
There are many predictive values and measurements proposed in the literature to help determine the chance of an eventual impacted canine. Ericson and Kurolo proposed predicting canine impaction using the angulation, distance, and sector of the canines from a panoramic radiograph to determine the chance of an impacted canine. That is, the deeper the cusp tip from the occlusal plane, the more perpendicular to the midline, and the closer to the midline, the greater the chance that tooth impaction will occur and the longer the duration of treatment. Many studies have shown that the mesiodistal position gives the best prediction value, while angulation and vertical position showed no statistical significance. Furthermore, an impacted canine which is closer to the midline, or whose cusp tip is mesial to the midline of the lateral incisor, is more likely to be palatally impacted, and root resorptions are also more frequent.

MANAGEMENT OF CANINE IMPACTION
Maxillary canine impaction usually needs multidisciplinary care, which involves oral surgery and periodontics along with orthodontic treatment. It is essential that the various clinicians working on the case have good communication to provide optimal care for the patient. The management of impacted canines can be divided into 2 treatment categories: interceptive treatment and corrective treatment.

Interceptive Treatment
Preventive modalities should be performed in cases that have a strong possibility of canine impaction. The elimination of obstacles to the path of eruption and the provision of sufficient space for underlying canines are essential. Therefore, extraction of the primary canine is thought to be a proper interceptive treatment. Many claim that this is the best treatment and it provides the most stable results. When appropriate, interceptive treatment is the most advantageous in terms of cost-benefit as compared to other more aggressive methods.

However, there are many factors to be considered before interceptive treatment can be done. A classic study from Ericson and Kurolo showed that extraction of the primary canines between the ages of 10 and 13 years will obtain a favorable result with most palatally erupted canines. If the cusp tip of a permanent maxillary canine in the panoramic radiograph does not exceed the midline of the lateral incisor, the chance of the canine erupting normally is 91%; if the cusp tip does exceed the midline of the lateral incisor, the chance for normally erupting drops to 64%.

Many modifications have been added to the extraction of primary canines to improve the results, including the use of cervical pull headgear, double extraction of the primary canine and the primary first molar, and the use of a transpalatal arch (TPA). All of these show favorable results as compared to the extraction of primary canines alone. The selection of these modifications should be based on individual clinical presentations.

Corrective Treatment
Corrective treatment is performed in situations where orthodontists cannot render preventive or interceptive treatment for some reason, or patients present beyond the point of prevention. There should be an attempt to bring impacted maxillary canines down to occlusion if possible, because permanent canines are important for both functional and aesthetic reasons. Treatment can be divided into 2 types, labial or palatal, depending on the position of the ectopic canines.

Three techniques have been proposed by Kokich for uncovering a labially unerupted maxillary canine (gingivectomy, apically positioned flap, and closed eruption technique). He also suggested that orthodontists should evaluate 4 criteria to determine the correct method for uncovering the tooth so the outcome achieves the optimum periodontal health. These criteria include the distance between the canine cusp and the mucogingival junction; the labiolingual position; the mesiodistal position; and the amount of gingiva in the area of the impacted canine.

In palatally impacted canines, the concern about the lack of keratinized gingiva disappears because palatal tis-
A good understanding by the clinician of the situation and treatment options can have a significant impact. A

References

Learning Objectives

After reading this article, the individual will learn:

- Basic concepts of impacted maxillary canines and evaluations of potentially impacted canines in individuals.
- How to make treatment decisions for impacted maxillary canines in various clinical scenarios and time points.

1. Which tooth has the longest and most tortuous eruption path in the mouth?
 - a. Mandibular third molar.
 - b. Maxillary canine.
 - c. Maxillary first premolar.
 - d. Maxillary second premolar.

2. Which tooth is the most frequently impacted in the oral cavity?
 - b. Mandibular second premolar.
 - c. Maxillary lateral incisor.
 - d. Mandibular third molar.

3. Which criterion (criteria) is (are) used to determine the proper access for uncovering impacted maxillary canines?
 - a. The distance between the canine cusp and the mucogingival junction.
 - b. The labiolingual position of the canine cusp.
 - c. The mesiodistal position of the canine cusp.
 - d. All of the above.

4. Which one of the following is NOT considered a local etiological factor of impacted canines?
 - a. Vitamin D deficiency.
 - b. Dentigerous cyst.
 - c. Cleft palate.
 - d. Missing permanent maxillary lateral incisors.

5. Which of the following is (are) clinical sign(s) of impacted maxillary canines?
 - b. Peg shaped lateral incisor.
 - c. Retained primary canine.
 - d. All of the above.

6. When moving the x-ray tube in a mesial direction to localize the palatally impacted maxillary canine:
 - a. The tooth moves mesially.
 - b. The tooth moves distally.
 - c. There is no change.
 - d. None of the above.

7. Which radiographic method is the best to locate the position of impacted maxillary canines?
 - a. Periapical radiograph.
 - b. Lateral cephalogram.
 - c. Panoramic radiograph.
 - d. Cone beam computed tomography (CBCT).

8. What is the advantage of CBCT?
 - a. Gives a 3-dimensional view.
 - b. Free of superimposition.
 - c. 1:1 magnification.
 - d. All of the above.

9. To predict impacted maxillary canines, which of the following could be used?
 - b. Vertical distance of canine cusp from occlusal plane.
 - c. Mesiodistal position of the canine cusp.
 - d. All of the above.

10. One of the most negative consequences of impacted canines is:
 - a. Decreased arch length.
 - b. Transposition of adjacent teeth.
 - c. Increased risk of cystic formation.
 - d. Causes root resorption of adjacent teeth.

11. Which of the following is the interceptive treatment modality for impacted maxillary canines?
 - a. Extraction of primary canine.
 - b. Extraction of primary canine in combination with cervical pull headgear.
 - c. Extraction of primary canine in combination with transpalatal arch.
 - d. All of the above.

12. According to the study from Ericson and Kurol, with extraction of the primary canine at age 11 years when the cusp tip of the permanent maxillary canine is between the central and the lateral incisors, the chance that this canine will erupt normally is:
 - a. 91%.
 - b. 75%.
 - c. 64%.
 - d. 50%.

13. Which of the following is NOT a surgical exposure technique for labially impacted canines?
 - a. Gingivectomy.
 - b. Coronally positioned flap.
 - c. Closed eruption technique.
 - d. Apically positioned flap.

14. Which surgical technique is NOT performed in the case of a palatally impacted canine?
 - a. Open eruption.
 - b. Close flap with auxiliary attachment.
 - c. Apically positioned flap.
 - d. None of the above.

15. The appropriate amount of force used to orthodontically move an impacted canine is:
 - a. 30 g.
 - b. 45 g.
 - c. 60 g.
 - d. 90 g.

16. When an impacted canine has to be removed, which of the following is a restorative treatment option?
 - a. Tooth autotransplantation.
 - b. Premolar substitution.
 - c. Prosthetic substitution.
 - d. All of the above.
Complete the paper answer sheet and submit your answers for this issue’s CE examinations. Answer at least 12 of the 16 questions correctly to earn 2 CE credits.

Mail this completed sheet (originals only, no photocopies) and the appropriate fee to:

Dentistry Today
Department of Continuing Education
100 Passaic Avenue
Fairfield, NJ 07004

Note: There is a $10 surcharge to process a check drawn on any bank other than a US bank. Should you have additional questions, please contact us at (973) 882-4700.

First and Last Name (PLEASE PRINT CLEARLY)
Street Address
Suite or Apartment Number
City State Zip Code
Dental License Number Specialty
Daytime Telephone Number With Area Code
Fax Number With Area Code
E-mail Address

Check one of the following:
☐ Enclosed is $40
 (This test is available for 2 hours of CE credit.)
☐ I am using a credit card.
 My information is provided below.
☐ Visa ☐ Master Card ☐ American Express ☐ Discover

Credit Card Number
Expiration Date
Name on Card
Signature

Please evaluate this month’s article.
Poor = 0 to Excellent = 5

Test 153

Course objectives were achieved. __________
Content was useful and benefited your clinical practice. __________
Review questions were clear and relevant to the editorial. __________
Illustrations and photographs were clear and relevant. __________
Written presentation was informative and concise. __________
How much time did you spend reading the article and completing the test? __________
What aspect of this course was most helpful and why? __________
What topics interest you for future Dentistry Today CE courses?

Approved PACE Program Provider
FAGD/MAGD Credit Approval does not imply acceptance by a state or provincial board of dentistry or AGD endorsement. June 1, 2012 to May 31, 2015 AGD PACE approval number: 309062

ADA CERP® Continuing Education Recognition Program
Dentistry Today, Inc., is an ADA CERP Recognized Provider. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry. Concerns or complaints about a CE provider may be directed to the provider or to ADA CERP at www.ada.org/goto/cerp.

Opinions expressed by CE authors are their own and may not reflect those of Dentistry Today. Mention of specific product names does not infer endorsement by Dentistry Today. Information contained in CE articles and courses is not a substitute for sound clinical judgment and accepted standards of care. Participants are urged to contact their state dental boards for continuing education requirements.

Or go to dentalcetoday.com, log on, and follow the directions. Immediate results with printable letter upon completion.

Test 153
for “Impacted Maxillary Canines: Diagnosis and Management”
beginning on page 62.

<table>
<thead>
<tr>
<th>Please circle your answers below.</th>
<th>Please circle your answers below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a b c d</td>
<td>9. a b c d</td>
</tr>
<tr>
<td>2. a b c d</td>
<td>10. a b c d</td>
</tr>
<tr>
<td>3. a b c d</td>
<td>11. a b c d</td>
</tr>
<tr>
<td>4. a b c d</td>
<td>12. a b c d</td>
</tr>
<tr>
<td>5. a b c d</td>
<td>13. a b c d</td>
</tr>
<tr>
<td>6. a b c d</td>
<td>14. a b c d</td>
</tr>
<tr>
<td>7. a b c d</td>
<td>15. a b c d</td>
</tr>
<tr>
<td>8. a b c d</td>
<td>16. a b c d</td>
</tr>
</tbody>
</table>

9. ab c d
10. ab c d
11. ab c d
12. ab c d
13. ab c d
14. ab c d
15. ab c d
16. ab c d

1. abcd
2. abcd
3. abcd
4. abcd
5. abcd
6. abcd
7. abcd
8. abcd

Please circle your answers below.

ANSWER SHEET

SEPTEMBER 2012 • DENTALCETODAY.COM